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As we move into the adolescent years of the 21st century, allow
e to discuss where research in mechanisms and robotics has

een as a prelude to considering where it is going.

Polynomials
Mechanisms have been characterized by the curves that they

race since the time of Archimedes �1�. In the 1800s, Reuleaux,
ennedy, and Burmester formalized this by applying the descrip-

ive geometry of Gaspard Monge to the analysis and synthesis of
achines �2�. Watt invented a straight-line linkage to convert the

inear expansion of steam into the rotation of the great beam,
aking the steam engine practical �Fig. 1�, and captured the

magination of the mathematician Chebyshev, who introduced the
athematical analysis and synthesis of linkages. About the same

ime, Sylvester, who introduced the Sylvester resultant for the
olution of polynomial equations, went on to lecture about the
mportance of the Peaucellier linkage, which generates a pure lin-
ar movement from a rotating link �3�. Influenced by Sylvester,
empe developed a method for designing a linkage that traces a
iven algebraic curve �4� that even now inspires research at the
ntersection of geometry �5,6� and computation.

In the mid-1950s, Denavit and Hartenberg introduced a matrix
ormulation of the loop equations of a mechanism to obtain poly-
omials that defined its movement �7�. During a speech in 1972,
reudenstein famously used the phrase “Mount Everest of kine-
atics” to describe the solution of these polynomials for the 7R
Fig. 1 Watt’s linkage transforms the rotational motion of

ournal of Mechanisms and Robotics Copyright © 20
spatial linkage �8�. In this context, the “solution” is not a single
root but an algorithm that yields all of the roots of the polynomial
system, which in turn defines all of the configurations of the link-
age for a given input.

It was immediately recognized that the 7R analysis problem
was equivalent to solving the inverse kinematics for a general
robot manipulator to obtain the configurations that are available to
pick up an object. By the end of the 1970s, Duffy �9� formulated
an efficient set of equations for this problem, but it was not until
the late 1980s when the degree 16 polynomial that yields the 16
robot configurations was obtained by Lee and Liang �10�.

By the mid-1990s, computer algebra and sparse resultant tech-
niques were the most advanced tools for formulating and solving
increasingly complex arrays of polynomials obtained in the study
of mechanisms and robotics systems �11,12�. In 1996, Husty used
computer algebra to reduce eight quadratic equations in eight
soma coordinates that locate the end-effector of a general six-
legged Stewart platform to a degree 40 polynomial �13�, which
allowed the calculation of the 40 configurations of the system.

2 Computers
In 1959, Freudenstein and Sandor �14� used the newly devel-

oped digital computer and the loop equations of a linkage to de-
termine its dimensions, initiating the computer-aided design of
mechanisms. Within 2 decades, the computer solution of the equa-
the great beam into the linear motion of the cylinder
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ions introduced by Denavit and Hartenberg was integral to the
nalysis of complex machine systems �15,16� and the control of
obot manipulators �17�.

Kaufman et al. �18,19� combined the computer’s ability to rap-
dly compute the roots of polynomial equations with a graphical
isplay to unite Freudenstein’s techniques with the geometrical
ethods of Reuleaux and Burmester to form KINSYN, an interac-

ive computer graphics system for mechanism design �Fig. 2�.
his was followed by the LINCAGES system of Erdman et al.

20,21� and the RECSYN system of Chuang et al. �22�, which com-
ined sophisticated computer graphics and polynomial solvers to
mplement Burmester’s strategy for linkage synthesis. Computer-
zed linkage synthesis was extended to spherical linkages �23,24�
nd spatial linkages �25� by the turn of the 21st century.

The pursuit of solutions to the design equations for the particu-
arly challenging problem of finding a four-bar linkage that traces

curve through nine specified points led Freudenstein and Roth
26,27� to develop a unique solution strategy, now called numeri-
al continuation. They started with a set of polynomials with a
nown solution, which was then deformed slightly, and the solu-
ion was updated numerically. Iterating this “parameter-
erturbation procedure,” they obtained a sequence of polynomials
nd solutions that converged to the target polynomials and the
esired solution. While this yielded the first solutions to the nine-
oint problem, their heuristic deformation procedure could not
nd all of the solutions.
By the 1980s, theoretical advances in numerical continuation

ielded algorithms that could reliably and efficiently find all solu-
ions to small sets of polynomial equations �28,29�. Tsai and Mor-
an �30� applied the polynomial continuation routine SYMPOL to
he eight quadratic polynomials of the inverse kinematics problem
or a general manipulator and obtained 16 roots in 4 min. In the
arly 1990s, Wampler and Morgan �31� revisited Freudenstein and
oth’s nine-point synthesis problem to obtain 1442 solutions,
emonstrating that polynomial continuation algorithms had come
f age.

A few years later, Raghavan and Roth �32,33� included polyno-
ial continuation with resultant elimination among the strategies

o obtain complete solutions to kinematics problems. In fact,
aghavan �34� used polynomial continuation to obtain 40 con-
gurations for the general Stewart platform, anticipating Husty’s
egree 40 polynomial.

Conclusion
The goal of this survey is to show that in the past century, our

bility to analyze and design mechanisms and robotic systems of
ncreasing complexity has depended on our ability to derive and
olve the associated increasingly complex polynomial systems.

ig. 2 Roger Kaufman using interactive computer graphics for
inkage synthesis at MIT in 1970
rom this, we can expect that advances in computer algebra and

10201-2 / Vol. 3, FEBRUARY 2011
numerical continuation for the derivation and solution of the even
more complex polynomial systems will advance research in
mechanisms and robotics.
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